Tod Gulick

Tod Gulick, M.D.[Lake Nona in Orlando]

  • Research

    Dr. Gulick studies regulated expression & functions of MEF2 alternative splicing (AS) variants & concerted AS programs in energy metabolism.

  • Biography

    Dr. Gulick is a graduate of University of Rochester School of Medicine.

Publications
View All Publications

Tod Gulick's Research Focus

Type 2 Diabetes, Cardiomyopathies, Heart Disease, Diabetes - General, Cardiovascular Diseases

Our lab studies the regulated expression of the myocyte enhancer factor 2 (Mef2) genes at levels of transcription and alternative splicing, and the selective functions of encoded Mef2 transcription factor isoforms. We have developed tools for functional genomic screens of isoform-selective protein and genetic interactions, and are developing mouse models to determine corresponding roles in vivo. We are also examining networks of alternative splicing involved in the regulation of fuel metabolism in striated muscle.

Tod Gulick's Research Report

Tod Gulick
Mef2 factors are master regulators of myogenesis and are the only transcription factors that direct the establishment of all three types of muscle (cardiac, skeletal, smooth). Mef2s also control genetic programs governing skeletal muscle fiber type, physiological and pathological cardiac hypertrophy, and fuel metabolic pathways in striated muscle. Genetic models have established that Mef2s also play pivotal roles in neuron differentiation, survival and synapse formation, T and B lymphocyte activation, and bone development. There are four Mef2 paralogs in vertebrates. The paralogs have similar patterns of alternative splicing that ramify on encoded protein structures and both the regulated alternative splicing and the encoded alternative Mef2 domains are conserved across paralogs and across evolution. We are exploring the functions of the Mef2-splicing isoforms using biochemical and molecular biological approaches in cell-based and mouse models. It is now apparent that the primary transcripts of more than 90 percent of human genes are alternatively spliced. Many of these events result in the generation of protein isoforms or the production of processed transcripts that are subject to nonsense mediated decay. We are addressing the hypothesis that there are master regulators of alternative splicing that influence fuel metabolism, superimposing a level of control onto that given by substrate availability, hormonal signaling, allosteric control and transcriptional regulation. Because skeletal muscle is second only to brain in the richness of alternative splicing, and fuel utilization is highly regulated in this tissue, we are using next-generation sequencing of muscle RNA and computational biological approaches to explore networks of alternative splicing that impact fuel utilization.

About Tod Gulick

Experience

Tod Gulick, M.D., is a graduate of Bowdoin College (B.A, liberal arts/physics) and the University of Rochester School of Medicine (M.D.). He completed his Internal Medicine internship and residency at Barnes Hospital, Washington University School of Medicine, in St. Louis, MO, followed by post-doctoral research fellowships in the Departments of Pharmacology and Medicine at Washington University School of Medicine, the Department of Molecular Biology, Massachusetts General Hospital, Boston, and the Genetics Department, Harvard Medical School, Boston, MA. Before joining Sanford-Burnham, Dr. Gulick was a member of the Diabetes Unit in the Department of Medicine at Massachusetts General Hospital and an Assistant Professor of Medicine at Harvard Medical School.

Become a Partner / Donate
Your support is crucial in turning hope into healing. Your support is crucial in turning hope into healing. Learn More
Social Media

Honors and Recognition

Surdna Foundation Fellowship in Physics, Bowdoin College
Fellowship, Radiation Effects Research Foundation, Hiroshima, Japan
F32 Individual National Research Service Award, NIGMS
Capps Scholarship in Diabetes, Harvard Medical School
K02 Independent Scientist Career Development Award, NIDDK
Basil O’Connor Scholar, March of Dimes Birth Defects Foundation.

Sign In Skip Navigation Links Skip navigation links
Our Mission
Research
Talent
Technology
Training & Education
Our Supporters
Privacy Policy